Publications
-
Bodnar, C., Bruinsma, W. P., Lucic, A., Stanley, M., Brandstetter, J., Garvan, P., Riechert, M., Weyn, J., Dong, H., Vaughan, A., Gupta, J. K., Tambiratnam, K., Archibald, A., Heider, E., Welling, M., Turner, R. E., & Perdikaris, P. (2024). Aurora: A foundation model of the atmosphere. ArXiv Preprint ArXiv:2405.13063.
-
Wang, S., Seidman, J. H., Sankaran, S., Wang, H., Pappas, G. J., & Perdikaris, P. (2024). Bridging Operator Learning and Conditioned Neural Fields: A Unifying Perspective. ArXiv Preprint ArXiv:2405.13998.
-
Guilhoto, L. F., & Perdikaris, P. (2024). Composite Bayesian Optimization In Function Spaces Using NEON–Neural Epistemic Operator Networks. ArXiv Preprint ArXiv:2404.03099.
-
Guilhoto, L. F., & Perdikaris, P. (2024). Deep Learning Alternatives of the Kolmogorov Superposition Theorem. ArXiv Preprint ArXiv:2410.01990.
-
Guilhoto, L. F., & Perdikaris, P. (2024). Deep Learning Alternatives of the Kolmogorov Superposition Theorem. ArXiv e-Prints.
-
Mao, S., Dong, R., Yi, K. M., Lu, L., Wang, S., & Perdikaris, P. (2024). Disk2Planet: A Robust and Automated Machine Learning Tool for Parameter Inference in Disk-Planet Systems. ArXiv Preprint ArXiv:2409.17228.
-
Bergamin, F., Diaconu, C., Shysheya, A., Perdikaris, P., Hernández-Lobato, J. M., Turne, R. E., & Mathieu, E. (2024). Guided autoregressive diffusion models with applications to PDE simulation.
-
Fang, Z., Wang, S., & Perdikaris, P. (2024). Learning only on boundaries: a physics-informed neural operator for solving parametric partial differential equations in complex geometries. Neural Computation.
-
Wang, S., Liu, T.-R., Sankaran, S., & Perdikaris, P. (2024). Micrometer: Micromechanics Transformer for Predicting Mechanical Responses of Heterogeneous Materials. ArXiv Preprint ArXiv:2410.05281.
-
Lippe, P., Veeling, B., Perdikaris, P., Turner, R., & Brandstetter, J. (2024). Pde-refiner: Achieving accurate long rollouts with neural pde solvers. Advances in Neural Information Processing Systems.
-
Raissi, M., Perdikaris, P., Ahmadi, N., & Karniadakis, G. E. (2024). Physics-informed neural networks and extensions. ArXiv Preprint ArXiv:2408.16806.
-
Wang, S., Li, B., Chen, Y., & Perdikaris, P. (2024). PirateNets: Physics-informed Deep Learning with Residual Adaptive Networks. ArXiv Preprint ArXiv:2402.00326.
-
Wang, S., Sankaran, S., & Perdikaris, P. (2024). Respecting causality for training physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering.
-
Liao, X., Qin, A., Seidman, J., Wang, J., Wang, W., & Perdikaris, P. (2024). Score Neural Operator: A Generative Model for Learning and Generalizing Across Multiple Probability Distributions. ArXiv Preprint ArXiv:2410.08549.
-
Costabal, F. S., Pezzuto, S., & Perdikaris, P. (2024). Δ-PINNs: physics-informed neural networks on complex geometries. Engineering Applications of Artificial Intelligence.
-
Wu, J., Wang, S. F., & Perdikaris, P. (2023). A dive into spectral inference networks: improved algorithms for self-supervised learning of continuous spectral representations. Applied Mathematics and Mechanics.
-
Mo, C., Perdikaris, P., & Raney, J. R. (2023). Accelerated design of architected materials with multifidelity Bayesian optimization. Journal of Engineering Mechanics.
-
Wang, S., Sankaran, S., Wang, H., & Perdikaris, P. (2023). An expert’s guide to training physics-informed neural networks. ArXiv Preprint ArXiv:2308.08468.
-
Perdikaris, P. G., Pappas, G. J., Seidman, J. H., & Kissas, G. (2023). Computer systems and methods for learning operators.
-
Fang, Z., Wang, S., & Perdikaris, P. (2023). Ensemble learning for physics informed neural networks: A gradient boosting approach. ArXiv Preprint ArXiv:2302.13143.
-
Wang, S., & Perdikaris, P. (2023). Long-time integration of parametric evolution equations with physics-informed deeponets. Journal of Computational Physics.
-
Lippe, P., Veeling, B. S., Perdikaris, P., Turner, R. E., & Brandstetter, J. (2023). Modeling accurate long rollouts with temporal neural PDE solvers.
-
Mao, S., Dong, R., Lu, L., Yi, K. M., Wang, S., & Perdikaris, P. (2023). Ppdonet: Deep operator networks for fast prediction of steady-state solutions in disk–planet systems. The Astrophysical Journal Letters.
-
Bhouri, M. A., Joly, M., Yu, R., Sarkar, S., & Perdikaris, P. (2023). Scalable Bayesian optimization with randomized prior networks. Computer Methods in Applied Mechanics and Engineering.
-
Bhouri, M. A., Joly, M., Yu, R., Sarkar, S., & Perdikaris, P. (2023). Scalable bayesian optimization with high-dimensional outputs using randomized prior networks. ArXiv Preprint ArXiv:2302.07260.
-
Kaltenbach, S., Perdikaris, P., & Koutsourelakis, P.-S. (2023). Semi-supervised invertible neural operators for Bayesian inverse problems. Computational Mechanics.
-
Seidman, J. H., Kissas, G., Pappas, G. J., & Perdikaris, P. (2023). Variational autoencoding neural operators. ArXiv Preprint ArXiv:2302.10351.
-
Wang, S., & Perdikaris, P. (2022). Adaptive Training Strategies for Physics-Informed Neural Networks.
-
Gander, L., Pezzuto, S., Gharaviri, A., Krause, R., Perdikaris, P., & Costabal, F. S. (2022). Fast characterization of inducible regions of atrial fibrillation models with multi-fidelity Gaussian process classification. Frontiers in Physiology.
-
Kissas, G., Hwuang, E., Thompson, E. W., Schwartz, N., Detre, J. A., Witschey, W. R., & Perdikaris, P. (2022). Feasibility of Vascular Parameter Estimation for Assessing Hypertensive Pregnancy Disorders. Journal of Biomechanical Engineering.
-
Beckers, T., Seidman, J., Perdikaris, P., & Pappas, G. J. (2022). Gaussian process port-Hamiltonian systems: Bayesian learning with physics prior.
-
Bhouri, M. A., & Perdikaris, P. (2022). Gaussian processes meet NeuralODEs: a Bayesian framework for learning the dynamics of partially observed systems from scarce and noisy data. Philosophical Transactions of the Royal Society A.
-
Wang, S., Wang, H., & Perdikaris, P. (2022). Improved architectures and training algorithms for deep operator networks. Journal of Scientific Computing.
-
Pezzuto, S., Perdikaris, P., & Costabal, F. S. (2022). Learning cardiac activation maps from 12-lead ECG with multi-fidelity Bayesian optimization on manifolds. IFAC-PapersOnLine.
-
Kissas, G., Seidman, J. H., Guilhoto, L. F., Preciado, V. M., Pappas, G. J., & Perdikaris, P. (2022). Learning operators with coupled attention. Journal of Machine Learning Research.
-
Daw, A., Bu, J., Wang, S., Perdikaris, P., & Karpatne, A. (2022). Mitigating propagation failures in physics-informed neural networks using retain-resample-release (r3) sampling. ArXiv Preprint ArXiv:2207.02338.
-
Daw, A., Bu, J., Wang, S., Perdikaris, P., & Karpatne, A. (2022). Mitigating propagation failures in pinns using evolutionary sampling.
-
Tipireddy, R., Perdikaris, P., Stinis, P., & Tartakovsky, A. M. (2022). Multistep and continuous physics-informed neural network methods for learning governing equations and constitutive relations. Journal of Machine Learning for Modeling and Computing.
-
Seidman, J., Kissas, G., Perdikaris, P., & Pappas, G. J. (2022). NOMAD: Nonlinear manifold decoders for operator learning. Advances in Neural Information Processing Systems.
-
Sankaran, S., Wang, H., Guilhoto, L. F., & Perdikaris, P. (2022). On the impact of larger batch size in the training of physics informed neural networks.
-
Yang, Y., Blanchard, A., Sapsis, T., & Perdikaris, P. (2022). Output-weighted sampling for multi-armed bandits with extreme payoffs. Proceedings of the Royal Society A.
-
Herrera, C. R., Grandits, T., Plank, G., Perdikaris, P., Costabal, F. S., & Pezzuto, S. (2022). Physics-informed neural networks to learn cardiac fiber orientation from multiple electroanatomical maps. Engineering with Computers.
-
Wang, S., Wang, H., Seidman, J. H., & Perdikaris, P. (2022). Random weight factorization improves the training of continuous neural representations. ArXiv Preprint ArXiv:2210.01274.
-
Daw, A., Bu, J., Wang, S., Perdikaris, P., & Karpatne, A. (2022). Rethinking the importance of sampling in physics-informed neural networks. ArXiv Preprint ArXiv:2207.02338.
-
Yang, Y., Kissas, G., & Perdikaris, P. (2022). Scalable uncertainty quantification for deep operator networks using randomized priors. Computer Methods in Applied Mechanics and Engineering.
-
Kaltenbach, S., Perdikaris, P., & Koutsourelakis, P.-S. (2022). Semi-supervised invertible deeponets for bayesian inverse problems. Stat.
-
Rao, R., Bolintineanu, D., Ortiz, W., Sankaran, S., Perdikaris, P., Hartt, W., Lindberg, S., & Hamersky, M. (2022). Viscoelastic Free Surface Flows: From Models to Experiments and Somewhere in Between.
-
Wang, S., Yu, X., & Perdikaris, P. (2022). When and why PINNs fail to train: A neural tangent kernel perspective. Journal of Computational Physics.
-
Ji, S., Pang, G., Zhang, J., Yang, Y., & Perdikaris, P. (2021). Accurate artificial boundary conditions for semi-discretized one-dimensional peridynamics. Proceedings of the Royal Society A.
-
Ma, N., Chen, L., Hu, J., Perdikaris, P., & Braham, W. W. (2021). Adaptive behavior and different thermal experiences of real people: A Bayesian neural network approach to thermal preference prediction and classification. Building and Environment.
-
Bhouri, M. A., Costabal, F. S., Wang, H., Linka, K., Peirlinck, M., Kuhl, E., & Perdikaris, P. (2021). COVID-19 dynamics across the US: A deep learning study of human mobility and social behavior. Computer Methods in Applied Mechanics and Engineering.
-
Wang, S., & Perdikaris, P. (2021). Deep learning of free boundary and Stefan problems. Journal of Computational Physics.
-
Wang, H., Crawford-Eng, I., & Perdikaris, P. (2021). Enhancing the trainability and expressivity of deep MLPs with globally orthogonal initialization.
-
Wang, S., Bhouri, M. A., & Perdikaris, P. (2021). Fast PDE-constrained optimization via self-supervised operator learning. ArXiv Preprint ArXiv:2110.13297.
-
Kissas, G., Hwuang, E., Thompson, E. W., Schwartz, N., Detre, J. A., Witschey, W. R., & Perdikaris, P. (2021). Feasibility of vascular remodeling parameter estimation for assessing hypertensive pregnancy disorders. BioRxiv.
-
Wang, S., Wang, H., & Perdikaris, P. (2021). LEARNING THE SOLUTION OPERATOR OF PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS WITH PHYSICS-INFORMED. ArXiv Preprint ArXiv:2103.10974.
-
Grandits, T., Pezzuto, S., Costabal, F. S., Perdikaris, P., Pock, T., Plank, G., & Krause, R. (2021). Learning atrial fiber orientations and conductivity tensors from intracardiac maps using physics-informed neural networks.
-
Wang, S., Wang, H., & Perdikaris, P. (2021). Learning the solution operator of parametric partial differential equations with physics-informed DeepONets. Science Advances.
-
Reyes, B., Howard, A. A., Perdikaris, P., & Tartakovsky, A. M. (2021). Learning unknown physics of non-Newtonian fluids. Physical Review Fluids.
-
Peng, G. C. Y., Alber, M., Tepole, A. B., Cannon, W. R., De, S., Dura-Bernal, S., Garikipati, K., Karniadakis, G., Lytton, W. W., Perdikaris, P., Petzold, L., & Kuhl, E. (2021). Multiscale modeling meets machine learning: What can we learn?
-
Wang, S., Wang, H., & Perdikaris, P. (2021). On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering.
-
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2021). Physics informed learning machine.
-
Yu, R., Perdikaris, P., & Karpatne, A. (2021). Physics-guided ai for large-scale spatiotemporal data.
-
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning.
-
Cai, S., Wang, Z., Wang, S., Perdikaris, P., & Karniadakis, G. E. (2021). Physics-informed neural networks for heat transfer problems.
-
Wang, S., Teng, Y., & Perdikaris, P. (2021). Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing.
-
Yang, Y., Bhouri, M. A., & Perdikaris, P. (2020). Bayesian differential programming for robust systems identification under uncertainty. Proceedings of the Royal Society A.
-
Lee, Y. K., Li, X., Perdikaris, P., Crocker, J. C., Reina, C., & Sinno, T. (2020). Hydrodynamic and frictional modulation of deformations in switchable colloidal crystallites. Proceedings of the National Academy of Sciences.
-
Kissas, G., Yang, Y., Hwuang, E., Witschey, W. R., Detre, J. A., & Perdikaris, P. (2020). Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering.
-
Bonfiglio, L., Perdikaris, P., & Brizzolara, S. (2020). Multi-fidelity Bayesian optimization of SWATH hull forms. Journal of Ship Research.
-
Costabal, F. S., Yang, Y., Perdikaris, P., Hurtado, D. E., & Kuhl, E. (2020). Physics-informed neural networks for cardiac activation mapping. Frontiers in Physics.
-
Agrawal, A., Amin, S., Atanasov, N., Banaszuk, A., Bartlett, P., Bayen, A., Boedecker, J., Borrelli, F., Chaudhari, P., Chiuso, A., Coogan, S., Cairano, S. D., Fazel, M., Foster, D., Gharesifard, B., Ghosh, S., Gibson, T., Gil, S., Gu, S., … Wu, C. (2020). The Second Annual Conference on Learning for Dynamics and Control. Proceedings of Machine Learning Research.
-
Tipireddy, R., Perdikaris, P., Stinis, P., & Tartakovsky, A. (2019). A comparative study of physics-informed neural network models for learning unknown dynamics and constitutive relations. ArXiv Preprint ArXiv:1904.04058.
-
Yang, Y., & Perdikaris, P. (2019). Adversarial uncertainty quantification in physics-informed neural networks. Journal of Computational Physics.
-
Yang, Y., & Perdikaris, P. (2019). Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems. Computational Mechanics.
-
Tepole, A. B., Cannon, W., De, S., Dura-Bernal, S., Garikipati, K., Karniadakis, G., Lytton, W., Perdikaris, P., Kuhl, E., Petzold, L., & Alber, M. (2019). Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences.
-
Alber, M., Tepole, A. B., Cannon, W. R., De, S., Dura-Bernal, S., Garikipati, K., Karniadakis, G., Lytton, W. W., Perdikaris, P., Petzold, L., & Kuhl, E. (2019). Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences.
-
Costabal, F. S., Matsuno, K., Yao, J., Perdikaris, P., & Kuhl, E. (2019). Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification. Computer Methods in Applied Mechanics and Engineering.
-
Gulian, M., Raissi, M., Perdikaris, P., & Karniadakis, G. (2019). Machine learning of space-fractional differential equations. SIAM Journal on Scientific Computing.
-
Costabal, F. S., Perdikaris, P., Kuhl, E., & Hurtado, D. E. (2019). Multi-fidelity classification using Gaussian processes: accelerating the prediction of large-scale computational models. Computer Methods in Applied Mechanics and Engineering.
-
Sarkar, S., Joly, M., & Perdikaris, P. (2019). Multi-fidelity learning with heterogeneous domains.
-
Sarkar, S., Mondal, S., Joly, M., Lynch, M. E., Bopardikar, S. D., Acharya, R., & Perdikaris, P. (2019). Multifidelity and multiscale Bayesian framework for high-dimensional engineering design and calibration. Journal of Mechanical Design.
-
Yang, Y., & Perdikaris, P. (2019). Physics-Informed Deep Generative Models for Scalable Uncertainty Quantification.
-
Zhu, Y., Zabaras, N., Koutsourelakis, P.-S., & Perdikaris, P. (2019). Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. Journal of Computational Physics.
-
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics.
-
Bonfiglio, L., Perdikaris, P., del Águila, J., & Karniadakis, G. E. (2018). A probabilistic framework for multidisciplinary design: Application to the hydrostructural optimization of supercavitating hydrofoils. International Journal for Numerical Methods in Engineering.
-
Klinghoffer, T., Perez, C. R., Vincent, R., Perdikaris, P., & Chryssostomidis, C. (2018). Applying Image Recognition to Enhance Fisheries Management Capabilities. 98th American Meteorological Society Annual Meeting.
-
Bonfiglio, L., Perdikaris, P., Vernengo, G., Medeiros, J. S. D., & Karniadakis, G. (2018). Improving swath seakeeping performance using multi-fidelity Gaussian process and Bayesian optimization. Journal of Ship Research.
-
Tartakovsky, A. M., Marrero, C. O., Perdikaris, P., Tartakovsky, G. D., & Barajas-Solano, D. (2018). Learning parameters and constitutive relationships with physics informed deep neural networks. ArXiv Preprint ArXiv:1808.03398.
-
Hsieh, M.-ying A., Li, W., Kularatne, D., Zhang, X., Perdikaris, P., & Ke, B. (2018). Machine Learning for Identifying Lagrangian Coherent Structures in Geophysical Flows. AGU Fall Meeting 2018.
-
Kularatne, D., Hsieh, M. Y. A., Li, W., Zhang, X., Perdikaris, P., & Ke, B. (2018). Machine Learning for Identifying Lagrangian Coherent Structures in Geophysical Flows. AGU Fall Meeting Abstracts.
-
Bonfiglio, L., Perdikaris, P., Brizzolara, S., & Karniadakis, G. E. (2018). Multi-fidelity optimization of super-cavitating hydrofoils. Computer Methods in Applied Mechanics and Engineering.
-
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2018). Multistep neural networks for data-driven discovery of nonlinear dynamical systems. ArXiv Preprint ArXiv:1801.01236.
-
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2018). Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM Journal on Scientific Computing.
-
Tartakovsky, G., Tartakovsky, A. M., & Perdikaris, P. (2018). Physics informed deep neural networks for learning parameters with non-Gaussian non-stationary statistics. AGU Fall Meeting Abstracts.
-
Yang, Y., & Perdikaris, P. (2018). Physics-informed deep generative models. ArXiv Preprint ArXiv:1812.03511.
-
Perez, C. R., Klinghoffer, T., Vincent, R., Perdikaris, P., Consi, T., & Chryssostomidis, C. (2018). Withdrawn: Bioelectric Field Measurements: Augmenting Image Recognition for Fisheries Management. 98th American Meteorological Society Annual Meeting.
Patents
-
Perdikaris, P. G., Pappas, G. J., Seidman, J. H., & Kissas, G. (2023). Computer systems and methods for learning operators.
-
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2021). Physics informed learning machine. Google Patents.